Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi.

نویسندگان

  • H Nakayashiki
  • K Kiyotomi
  • Y Tosa
  • S Mayama
چکیده

MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kobe University Repository : Kernel Tit le The C - terminal chromodomain - like module in the integrase domain is crucial for high transposit ion efficiency of the retrotransposon MAGGY

MAGGY is a Ty3/Gypsy retrotransposon, which was identified in the rice blast fungus Magnaporthe oryzae. Some Ty3/Gypsy retrotransposons, including MAGGY, contain a chromodomain-like module (CLM) in the C-terminus of the integrase domain. We have made a series of MAGGY mutants to examine the role of the CLM in the transposition activity of the element. Introduction of a mutation at different pos...

متن کامل

siRNA-dependent and -independent post-transcriptional cosuppression of the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe oryzae

The LTR-retrotransposon MAGGY was introduced into naive genomes of Magnaporthe oryzae with different genetic backgrounds (wild-type, and MoDcl1 [mdl1] and MoDcl2 [mdl2] dicer mutants). The MoDcl2 mutants deficient in MAGGY siRNA biogenesis generally showed greater MAGGY mRNA accumulation and more rapid increase in MAGGY copy number than did the wild-type and MoDcl1 mutants exhibiting normal MAG...

متن کامل

Screening of Lovastatin Production by Filamentous Fungi

In the present study, 110 fungal strains of Persian Type Culture Collection (PTCC) including some selected strains isolated in various screening projects were tested for their potentiality to produce lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reduc-tase), the rate-limiting enzyme of cholesterol biosynthesis. The fungal strains were cultivated in a t...

متن کامل

The development of Aspergillus niger var. awamori as a host for the expression and secretion of heterologous gene products.

Filamentous fungi possess unique features which make them attractive as hosts for the production of heterologous gene products. For example, certain fungal species are capable of secreting large quantities of protein in submerged culture. Selected strains of Aspergillus niger can produce greater than 20 g of glucoamylase I ~ I in industrial fermentations [ 11. Some filamentous fungi, including ...

متن کامل

The biology and potential for genetic research of transposable elements in filamentous fungi

Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons) that use RNA and reverse transcriptase and class II elements (DNA transposons) that use DNA. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 153 2  شماره 

صفحات  -

تاریخ انتشار 1999